some small config edits, added jwst attempts for orbit

This commit is contained in:
Thomas Faour 2025-06-06 19:30:32 -04:00
parent 7de52b0a3d
commit b4d6062640
6 changed files with 244 additions and 16 deletions

8
.gitignore vendored
View File

@ -4,4 +4,10 @@ __pycache__
/build /build
/cmake-build-* /cmake-build-*
CMakeFiles/ CMakeFiles/
*.cmake *.cmake
/rust/target
/rust/target/*
rust/Cargo.lock
out.out
output.json
*.png

View File

@ -82,4 +82,4 @@ if(ENABLE_NCURSES)
find_package(Curses REQUIRED) find_package(Curses REQUIRED)
target_compile_definitions(orbital_simulator PRIVATE NCURSES_ENABLED) target_compile_definitions(orbital_simulator PRIVATE NCURSES_ENABLED)
target_link_libraries(orbital_simulator PRIVATE ${CURSES_LIBRARIES}) target_link_libraries(orbital_simulator PRIVATE ${CURSES_LIBRARIES})
endif() endif()

View File

@ -58,6 +58,22 @@ def read_output_file(filename):
return positions, times return positions, times
def calculate_l2_point(sun_pos, earth_pos):
"""Calculate L2 Lagrange point position."""
# Calculate distance between bodies
dx = earth_pos[0] - sun_pos[0]
dy = earth_pos[1] - sun_pos[1]
r = np.sqrt(dx*dx + dy*dy)
# Calculate mass ratio (using approximate values)
mu = 5.972e24 / (1.989e30 + 5.972e24) # Earth mass / (Sun mass + Earth mass)
# Calculate L2 position (beyond Earth)
L2_x = sun_pos[0] + (1 + mu**(1/3)) * dx
L2_y = sun_pos[1] + (1 + mu**(1/3)) * dy
return (L2_x, L2_y)
def center_positions(positions, center_body): def center_positions(positions, center_body):
"""Center all positions relative to the specified body.""" """Center all positions relative to the specified body."""
if center_body not in positions: if center_body not in positions:
@ -103,9 +119,7 @@ def create_animation(positions, times, output_file=None, center_body=None):
# Set up the plot # Set up the plot
ax.set_xlabel('X (m)') ax.set_xlabel('X (m)')
ax.set_ylabel('Y (m)') ax.set_ylabel('Y (m)')
title = 'Orbital Simulation' title = 'Orbital Simulation (L2 centered)'
if center_body:
title += f' (centered on {center_body})'
ax.set_title(title) ax.set_title(title)
ax.legend() ax.legend()
@ -121,11 +135,23 @@ def create_animation(positions, times, output_file=None, center_body=None):
if not all_x or not all_y: if not all_x or not all_y:
print("Error: No valid position data found") print("Error: No valid position data found")
return return
# Calculate initial L2 point for reference
if 'Sun' in positions and 'Earth' in positions:
initial_l2 = calculate_l2_point(positions['Sun'][0], positions['Earth'][0])
# Set a fixed zoom level around L2 (adjust the factor to change zoom)
zoom_factor = 2e9 # 2 million km view
ax.set_xlim(-zoom_factor, zoom_factor)
ax.set_ylim(-zoom_factor, zoom_factor)
max_range = max(max(abs(min(all_x)), abs(max(all_x))), # Create L2 point scatter plot at origin
max(abs(min(all_y)), abs(max(all_y)))) l2_scatter, = ax.plot([0], [0], 'gx', markersize=10, label='L2')
ax.set_xlim(-max_range, max_range) scatters['L2'] = l2_scatter
ax.set_ylim(-max_range, max_range) else:
max_range = max(max(abs(min(all_x)), abs(max(all_x))),
max(abs(min(all_y)), abs(max(all_y))))
ax.set_xlim(-max_range, max_range)
ax.set_ylim(-max_range, max_range)
def init(): def init():
"""Initialize the animation.""" """Initialize the animation."""
@ -135,10 +161,20 @@ def create_animation(positions, times, output_file=None, center_body=None):
def update(frame): def update(frame):
"""Update the animation for each frame.""" """Update the animation for each frame."""
for name, scatter in scatters.items(): if 'Sun' in positions and 'Earth' in positions:
if positions[name]: # Only update if we have positions # Calculate L2 point for current frame
x, y = zip(*positions[name][:frame+1]) l2_point = calculate_l2_point(positions['Sun'][frame], positions['Earth'][frame])
scatter.set_data(x, y)
# Update positions relative to L2
for name, scatter in scatters.items():
if name == 'L2':
scatter.set_data([0], [0]) # Keep L2 at origin
elif positions[name]: # Only update if we have positions
x, y = zip(*positions[name][:frame+1])
# Shift positions relative to L2
x = [pos - l2_point[0] for pos in x]
y = [pos - l2_point[1] for pos in y]
scatter.set_data(x, y)
return list(scatters.values()) return list(scatters.values())
# Create the animation # Create the animation

22
config/jwst.json Normal file
View File

@ -0,0 +1,22 @@
{
"bodies": [
{
"name": "Earth",
"mass": 5.972e24,
"position": [1.47095e11, 0, 0],
"velocity": [0, 29290, 0]
},
{
"name": "Sun",
"mass": 1.989e30,
"position": [0, 0, 0],
"velocity": [0, 0, 0]
},
{
"name": "JWST",
"mass": 6500,
"position": [149217067274.40607, 0, 0],
"velocity": [0, 29729.784, 0]
}
]
}

View File

@ -21,9 +21,15 @@
{ {
"name": "Moon", "name": "Moon",
"mass": 7.34767309e22, "mass": 7.34767309e22,
"position": [149982270700, 0, 0], "position": [146699500000, 0, 0],
"velocity": [0, 30822, 0] "velocity": [0, 28278, 0]
}, },
{
"name": "JWST",
"mass": 6500,
"position": [1.49995e11, 0, 0],
"velocity": [0,30603,0]
},
{ {
"name": "Sun", "name": "Sun",
"mass": 1.989e30, "mass": 1.989e30,
@ -31,4 +37,4 @@
"velocity": [0, 0, 0] "velocity": [0, 0, 0]
} }
] ]
} }

158
python/plot_potential.py Normal file
View File

@ -0,0 +1,158 @@
import json
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.colors import LogNorm
# Constants from our Rust implementation
G = 6.67430e-11 # Gravitational constant
R_0 = 149597870700 # Earth radius (normalization length)
M_0 = 5.972e24 # Earth mass (normalization mass)
T_0 = 5060.0 # Characteristic time
def load_bodies(config_file):
"""Load bodies from config file."""
with open(config_file, 'r') as f:
data = json.load(f)
return data['bodies']
def calculate_potential(x, y, bodies):
"""Calculate gravitational potential at point (x,y)."""
potential = 0.0
for body in bodies:
dx = x - body['position'][0]
dy = y - body['position'][1]
r = np.sqrt(dx*dx + dy*dy)
if r > 0: # Avoid division by zero
potential -= G * body['mass'] / r
return potential
def calculate_lagrange_points(bodies):
"""Calculate approximate positions of Lagrange points."""
if len(bodies) != 2:
return []
# Find primary and secondary bodies
if bodies[0]['mass'] > bodies[1]['mass']:
primary, secondary = bodies[0], bodies[1]
else:
primary, secondary = bodies[1], bodies[0]
# Calculate distance between bodies
dx = secondary['position'][0] - primary['position'][0]
dy = secondary['position'][1] - primary['position'][1]
r = np.sqrt(dx*dx + dy*dy)
# Calculate mass ratio
mu = secondary['mass'] / (primary['mass'] + secondary['mass'])
# Calculate Lagrange points
L1 = np.array([primary['position'][0] + (1 - mu**(1/3)) * dx,
primary['position'][1] + (1 - mu**(1/3)) * dy])
L2 = np.array([primary['position'][0] + (1 + mu**(1/3)) * dx,
primary['position'][1] + (1 + mu**(1/3)) * dy])
L3 = np.array([primary['position'][0] - (1 + 5*mu/12) * dx,
primary['position'][1] - (1 + 5*mu/12) * dy])
L4 = np.array([primary['position'][0] + 0.5 * dx - 0.866 * dy,
primary['position'][1] + 0.5 * dy + 0.866 * dx])
L5 = np.array([primary['position'][0] + 0.5 * dx + 0.866 * dy,
primary['position'][1] + 0.5 * dy - 0.866 * dx])
return [L1, L2, L3, L4, L5]
def plot_potential(config_file, grid_size=200, extent=1.5):
"""Plot gravitational potential field."""
# Load bodies
bodies = load_bodies(config_file)
# Find Earth and Sun
earth = next((body for body in bodies if body['name'] == 'Earth'), None)
sun = next((body for body in bodies if body['name'] == 'Sun'), None)
if not (earth and sun):
print("Error: Earth and Sun must be present in the config file")
return
# Calculate Lagrange points for Earth-Sun system
lagrange_points = calculate_lagrange_points([sun, earth])
# Create coordinate grid centered on Earth
x = np.linspace(earth['position'][0] - extent*R_0, earth['position'][0] + extent*R_0, grid_size)
y = np.linspace(earth['position'][1] - extent*R_0, earth['position'][1] + extent*R_0, grid_size)
X, Y = np.meshgrid(x, y)
# Calculate potential at each grid point
Z = np.zeros_like(X)
for i in range(grid_size):
for j in range(grid_size):
Z[i,j] = calculate_potential(X[i,j], Y[i,j], bodies)
# Take absolute value for logarithmic scale
Z_abs = np.abs(Z)
# Calculate reference potential at Earth's position
earth_potential = abs(calculate_potential(earth['position'][0], earth['position'][1], [sun]))
# Set scale to focus on Earth-Sun system
vmin = earth_potential / 10 # Show potential variations within an order of magnitude
vmax = earth_potential * 10
# Create plot
plt.figure(figsize=(12, 10))
ax = plt.gca()
# Plot potential field with logarithmic scale
im = ax.imshow(Z_abs, extent=[x[0], x[-1], y[0], y[-1]],
origin='lower', cmap='viridis', norm=LogNorm(vmin=vmin, vmax=vmax))
# Add colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax, label='|Gravitational Potential| (J/kg)')
# Plot bodies with different colors
body_colors = {
'Sun': 'yellow',
'Earth': 'blue',
'Moon': 'gray',
'Mars': 'red',
'Venus': 'orange',
'Mercury': 'brown',
'Jupiter': 'orange',
'Saturn': 'gold',
'Uranus': 'lightblue',
'Neptune': 'blue'
}
for body in bodies:
color = body_colors.get(body['name'], 'white') # Default to white if name not found
ax.plot(body['position'][0], body['position'][1], 'o',
color=color, markersize=15, label=body['name'])
# Plot Lagrange points
for i, point in enumerate(lagrange_points, 1):
ax.plot(point[0], point[1], 'r+', markersize=12, label=f'L{i}')
# Customize plot
ax.set_xlabel('X (m)')
ax.set_ylabel('Y (m)')
ax.set_title('Gravitational Potential Field with Lagrange Points (Log Scale)')
ax.legend()
# Save plot
plt.savefig('potential_field.png', dpi=300, bbox_inches='tight')
plt.show()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Plot gravitational potential field from config file')
parser.add_argument('config_file', help='Path to config file')
parser.add_argument('--grid-size', type=int, default=200, help='Grid size for potential calculation')
parser.add_argument('--extent', type=float, default=1.5, help='Plot extent in Earth radii')
args = parser.parse_args()
plot_potential(args.config_file, args.grid_size, args.extent)