Thomas Faour 5e3d043af4 it WORKS!
2025-06-01 00:42:31 -04:00

75 lines
1.8 KiB
Python

import numpy as np
from decimal import Decimal
#Declare these as units to make code clearer
class HighPrecisionVector(np.ndarray):
def __new__(cls, input_array, *args, **kwargs):
decimal_array = [Decimal(i) for i in input_array]
obj = np.asarray(decimal_array).view(cls)
return obj
class HighPrecisionMatrix(np.ndarray):
def __new__(cls, dim1, dim2, *args, **kwargs):
decimal_array = [Decimal(0) for _ in range(dim1)]
decimal_matrix = [decimal_array for _ in range(dim2)]
obj = np.asarray(decimal_matrix).view(cls)
return obj
class Position(HighPrecisionVector):
pass
class Velocity(HighPrecisionVector):
pass
class Acceleration(HighPrecisionVector):
pass
Mass = Decimal
####################
# USEFUL CONSTANTS
####################
EARTH_MASS = Decimal(5972 * 10**21) #kg
EARTH_RADIUS = Decimal(6378 * 10**3) #meters
EARTH_ORBITAL_VELOCITY = Decimal(29780) # m/s
AU = Decimal(149_597_870_700) #meters
MOON_MASS = Decimal(734767309 * 10**14)
MOON_ORBITAL_VELOCITY = Decimal(1022) #m/s relative to earth
SUN_MASS = Decimal(1989 * 10**27) #kg
SUN_RADIUS = Decimal(6957 * 10**5) #meters
pi_approx = Decimal("3.14159265358979323846264338327950288419716939937510")
#NORMALIZING CONSTANTS
G = Decimal(6.67430e-11)
r_0 = Decimal(EARTH_RADIUS) #1.496e11
m_0 = Decimal(5.972e24)
t_0 = np.sqrt((r_0**3) / (G*m_0))
def norm_pos(pos):
return Decimal(pos) / Decimal(r_0)
def real_pos(pos):
return pos * Decimal(r_0)
def norm_mass(mass):
return Decimal(mass) / Decimal(m_0)
def real_mass(mass):
return Decimal(mass) * Decimal(m_0)
def norm_time(time):
return Decimal(time) / Decimal(t_0)
def real_time(time):
return Decimal(time) * Decimal(t_0)
def norm_vel(vel):
return vel / Decimal(r_0/t_0)
def real_vel(vel):
return vel * Decimal(r_0/t_0)